
AL Chemistry <u>Rate Equations and Order of Reaction</u> Exercise 1 Order of Reaction

The above figure shows the relationship between the concentration of a radioactive substance and time.

- 1. What is the order of reaction with respect to the concentration of this radioactive substance [A].
- 2. Suggest the integrated rate equation for the above radioactive decay.
- 3. What is the meaning of half-life?

4. Half-life
$$t_{\frac{1}{2}} = \frac{0.693}{k_1}$$
, how can we get 0.693?

5. According to the above figure, what is the half-life?

Carbon-14 is a radioactive isotope of carbon. It can be used to determinate the dates of archaeological (考古學) and geological events.

Please read page 46 and answer the following questions.

- 6. Where is the source of $^{14}C?$
- 7. By which kind of chemical compound of carbon that ¹⁴C is corporated into plants.

Radioactive decay of ¹⁴C is shown in the following equation.

 $^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}\boldsymbol{b}$

- 8. What is ${}^{0}_{-1}\boldsymbol{b}$?
- 9. When ${}^{14}_{6}C$ is decay to ${}^{14}_{7}N$, their mass no. remain the same but the atomic no. increase by 1. Why? What does ${}^{0}_{-1}\boldsymbol{b}$ come from?
- 10. In carbon-14 dating, how can we know the original amount of 14 C.
- 11. The radioactive isotope of an element x has a half-life of 950 days and decays by first order kinetics.
 - (a) What is the rate constant of the decay reaction of x?
 - (b) How much would a sample of 10 g of *x* be left after 3000 days?
- 12. The C-14 content from a sample of ancient wood is only 60% of that of a similar piece of modern wood. Determine the age of the ancient wood if C-14 as a half-life of 5730 years. State any **assumptions** made in the calculation.